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ABSTRACT

Final Report - Investigation of
Finite Elements for Strongly Nonlinear Problems

This final report summarizes the results of an evaluation of two new plate and
shell elements for use in large deflection nonlinear analysis. The elements
are of the “"stability element" type, in which nonlinear strains are included in
calculations, with their values optimized by added membrane displacement func-
tions and special types of elemental level constraints. The report summarizes
the formulation and implementation of the elements, and discusses numerical
results in detail. Conclusions are drawn regarding the effectiveness of these
element; for solving highly nonlinear problems and also for solving certain
types of linear shell structure problems. The crucial rcle of stepping/
iterative solution procedures is discussed, and solution procedures of improved
convergence are described. Finally nonlinear finite element alternatives are
discussed from the points of view of accuracy, computing cost, element size,
discretization considerations, and solution convergence.
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1.0 INTRODUCTION AND SUMMARY

This report discusses the development and evaluation of two new finite elements
for nonlinear shell analysis. The elements are of a new type called "stability
elements," specifically adapted to handle linear shell analysis, and nonlinear
effects in plates and shells due to large deflections. The original work on
these elements was under NASA-MSFC Contract NAS8-30626, monitored by Dr. John Key,
and accomplished theoretical development and a partial computer code develop-
ment. The present research is under AFOSR Contract F44620-76-C-0130, monitored
by Mr. William Walker and Lt. Col. Joseph Morgan. Under the present contract

the computer codes have been completed, critical evaluations made of the perform-
ance of the elements, and recommendations developed for further research.

The numerical performance of the stability elements has been very good, and it
- appears clear that they have a significant advantage over conventional elements
for solving nonlinear problems without resorting to very small elements. The
presént research has defined modified and simplified formulations for the
elements which should improve their performance still further. In addition,
the numerical work has indicated that improved nonlinear solution procedures
should be used in conjunction with the new elements, in order to achieve the
large step sizes which these elements can handle. Recommendations are made for
a combination of nonlinear, stability-type elements with nonlinear-step solution
procedures.

Computing costs with the new elements have been quite high. However, high
computing costs are generally acceptable in stepping solutions of highly non-
linear problems. It appears that with the use of conventional elements, in
smaller sizes, to achieve comparable accuracy, the costs would be higher still.
The use of the recommended nonlinear-step solution procedure, in conjunction
with the stability elements, should decrease computing costs significantly

- through allowing larger step sizes.

This report describes the technical formu]ation of the stability elements and
outlines the overall computational procedures required for their use. Numerical
calculations are discussed for several problems in order to illustrate the
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elements' performance in critical areas. Solution procedure difficulties are
discussed, and a special, quasi-nonlinear solution procedure which was success-
ful in achieving convergence with relatively large step sizes is described.
Emphasis in the report is placed on the quadrilateral element, since the work
has indicated that it is the better of the two elements studied. There are
alternative approaches to the stability elements which might be used to solve
highly nonlinear problems with varying degrees of success and cost. These are
briefly discussed in Section 2.6. Finally, conclusions and recommendations for
further research are discussed in Section 3.0.




2.0 TECHNICAL DISCUSSION

This section discusses the conceptual basis, theoretical development, computer
code arrangement, compatible stepping solution procedures, and numerical per-
formance of the new stability elements. This comprises an overall description
of the element development from conception through the evaluations and exten-
sions accomplished on the present contract. This broad coverage will describe
the elements sufficiently that reference to earlier documentation for detail
should not be required. However, should details such as equations or more in-
depth discussions be required, the reader is referred to the original contract
document (Reference 1) submitted to NASA-MSFC (NAS8-30626, Volume II).

The evaluation of the numerical performance of the elements, Section 2.5,
includes discussions of specific areas in which their formulation requires
improvement. These results are the basis of the recommendations made in
Section 3.0.

2.1 Description of Stability Elements

It has been found that conventional finite elements may suffer serious loss of
accuracy in application to large deflection problems which are strongly non-
linear. The particular difficulty of concern here occurs when the finite
element formulation specifically employs nonlinear strain-displacement equations
and thus may generate large strain levels through nonlinear behavior. The
problem was originally discussed by Mallett in Reference 2, by Haftka, Mallett,
and Nachbar in Reference 3, and by Berke and Mallett in Reference 4. The work
in Reference 3 suggested a procedure for resolving the difficulty for beam
elements. The present work has extended this procedure to the two dimensional
case of plates and doubly curved shells, and refers to the elements as HMN
elements, in recognition of the authors of Reference 3.

The basic difficulty occurs because the nonlinear strain-displacement equations
contain squares and products of the displacement gradients, in particular, the
bending slopes of the midsurface of the plate or shell. Since the bending
displacements of such elements conventionally are second, third, or higher
degree polynomials, the squares and products of their derivatives are of degree




two, three, four, or higher. The membrane strains therefore contain terms, due
to nonlinear behavior, which are of a higher polynomial deyree than those which
result from the derivatives of the membrane displacements themselves. These
higher degree polynomial forms also occur in shell elemerts in linear analysis,
due to the presence of initial curvature. The high degree membrane strains
induced by nonlinearity or initial curvature cannot be “erased" by the lower
degree element membrane displacement function derivatives. The result is
excessive strain energy, and hence stiffness, of the finite element representa-
tion. In contrast, in actual physical behavior, plate and shell structures
behave in such a way as to minimize the participation of higher degree deforma-
tion forms, since such forms would excessively absorb strain energy and thus
would cause excessively high stiffness in structural behavior. The actual
physical action takes place through small in-surface adjustments of the membrane
displacements, which naturally work to reduce the strain energy by eliminating
unnecessarily complex strain states. The membrane displacements which accom-
plish this are necessarily of a rapidly varying, i.e., high polynomial degree,
type.

Stability Element Formulation

The approach of Reference 3 was to introduce axial displacement forms for the
beam element through the 5th degree polynomial forms. This provided a quartic
axial strain which was used to “erase” the qdartic nonlinear axial strain
resulting from the square of the bending slope. The method employed to deter-
mine the amplitudes of the added axial displacement forms was minimization of
the potential energy on the elemental level. This corresponds to the physical
behavior by which the structure seeks a minimum energy state. The authors also
showed that the same result can be obtained by directly constraining the axial
strain to eliminate its high degree polynomial components.

The procedures of Reference 3 appear to be extendable to apply to plate and
shell elements. The basic approach is to start with an available element which
has been used for linear analysis, to add supplementary membrane (HMN) functions
to control the high degree nonlinear membrane strains, and to derive appropriate
constraint equations to effect this control. This was done with the BCIZ and




AZ1 (References 5, 6) elements. Considerable additional complexity occurs, for
several reasons: there are three membrane strains to control and two displace-
ment components to deal with, rather than the single axial strain and displace-
ment of the beam problem; constraints on the added displacement forms must
avoid creating inter-element incompatibilities; the strain constraints must be
formulated in two dimensions, and the equations are difficult to deduce. The
overall procedures required to deal with the plate and shell elements is
described in detail in Reference 1. Briefly, it is as described below. The
development is based on extensions of the triangular BCIZ (Reference 5) and
quadrilateral AZI (Reference 6) elements. Double curvature and fully coupled
membrane and bending displacement states are included.

0 Higher degree polynomial forms in the membrane strain equations, result-
ing from large deflection-induced nonlinearities, and also from initial
curvature, for shell elements, are determined. Thus, amplitudes, in terms
of nodal bending freedoms, of polynomial forms such as x2y, xy2, x3, y3,
x2y2, etc., are determined.

0 Supplementary membrane displacement forms are deduced such that the added
forms are able to produce these same polynomial strain terms. The supple-
mentary membrane functions must form a complete set, in combination with
the basic membrane functions of the element. The high degree polynomial
strain terms must be produced as independent functions.

o A set of strain constraints is developed to reduce the polynomial degree
of the membrane strains to the same degree which they have in the basic
element formulation. The constraints must avoid inter-element incompati-
bility while providing as complete as possible a control over the high
degree membrane strains. Dependencies among the strain constraint condi-
tions must be avoided; this can be a troublesome problem.

0 Those supplementary (HMN) membrane functions which do not participate in
the above constraints, but which are present in order to keep a complete
set of functions, are reduced out by potential energy minimization at the
elemental level. The minimum energy constraint cannot be used for HMN




4s controlled along lines 1-3, 8-4, 7-5, and ¢

functions at inter-element boundaries, because inter-element displacement
incompatibilities would result.

In applications, the above has led to procedures in which the added displace-
ments include high degree forms defined independently along the sides of the
elements and in their interiors, and in which the constraints include both
explicit strain constraints and minimum potential energy constraints, all on
the elemental level. When the added displacements are parallel to a particular
line (say, a side) in the element, the amplitudes of the added displacements
are completely fixed by the values of the bending displacement along that line,
with numerical values defined by the constraint equations. This is the case
for most of the HMN constraints used in the two elements, and assures inter-
element compatibility of displacements parallel to the sides of the elements.
For the triangular element, HMN functions normal to the sides of the elements
were found to cause inter-element incompatibilities, and hence were dropped
from consideration. In the numerical work to date with the quadrilateral
element, supplementary membrane displacements normal to the sides of the ele-
ments have in some cases been used. These functions serve to eliminate high
degree nonlinear membrane shear strains. The element derivation contains

such normal-to-the-side displacements of cubic and quartic variations. It has
been reasoned (Reference 1) that the cubic form would produce unacceptable
inter-element incompatibility, and these functions are not retained. The
quartic form was felt to be acceptable, and is currently retained in calcula-
tions. The inter-element incompatibility associated with the quartic function
is nonzero but generally very small.

Figure 1 illustrates the manner in which the explicit strain constraints are
imposed for the two elements in the computer programs. For the triangle, the
extensional strain parallel to the three sides, designated by €gs is controlled
as a polynomial function of the side-length coordinate, s. This control is
through the 4th degree polynomial. For the quadrilateral, the extensional
strain parallel to the edges and the mid-line of the element, in both the x and
y directions, are controlled through the 2nd degree polynomial form. Thus, €
y along lines 1-7, 2-6, and 3-5
in the figure, using, respectively, cubic functions for u and v. In addition,
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“the shear strain e

is controlled for the cubic polynomial form along the four

Xy s
sides of the element. This is accomplished through added displacements of

quartic form, normal to the sides of the elements, as discussed above.

A1l HMN constraints are formulated for the parent element of the isoparametric
family. This is essential because the displacement functions are expressed in
terms of the parent element coordinates. It is essential to account for the
general isoparametric element in the HMN constraints. This is not conveniently
done through the normal Jacobian transfcrmation of the isoparametric family,
since distinct polynomial forms, rather than numerical values at integration
points, are required for the HMN constraints. Consequently, it was necessary
to re-derive the HMN constraints, dealing at the outset with the general iso-
parametric element. This was done through the use of element side and mid-line
(see Figure 2) length scale factors and similar scale factors relating to

- differentiations.

Coordinate Systems and Updating

The application of the HMN strain constraint procedure and the intended purposes
of the new elements have implications regarding coordinate systems and stepwise
updating. The elements are to handle large rotation problems and are to avoid
cumulative error by computing total nonlinear strains rather than summing
increments. These requirements are best satisfied by using element coordinate
systems which follow the elements throughout the deformation. If a fixed
system, such as a fixed cartesian or fixed shell surface intrinsic system were
used, and the stepwise calculation implemented by updating the element position
within this system, a problem of role exchange between the element displacement
forms would occur. In this role exchange, the displacement forms (e.g., cubics)
intended for the bending displacements, and, say, directed along a locally

fixed z-axis, would after a large rotation be partly directed along material
lines lying in the plane of the deformed element. Conversely, the membrane
displacements along locally fixed x and y axes would, after a large rotation,

be partly directed along a material line normal to the deformed element. This
difficulty limits the allowable magnitudes of the rotations for elements with
distinctly different membrane and bending displacement formg, in formulations




using fixed coordinate systems for displacement definitions. It suggests that
“following" coordinate systems with updating be used for nonlinear elements.

A second factor reinforces this conclusion in the case of the stability ele-
ment approach. The nonlinear strain equation for e, referred to Tocally
cartesian coordinates, is

2
+w, ]

= 2
Gx o u:x + ]/2 [22-*’

2
X
The term w,i is important even for small rotations; u,i and v,i become
important terms for large rotations. As discussed earlier, the membrane
functions u and v contain high degree polynomial forms, to implement the
HMN methodology. If the underlined terms in the above equations are retained,
these high degree components of u and v will create undesirably high degree
x+ This is precisely the effect which the HMN procedure is
intended to avoid. Consequently, in formulating the HMN elements, it appears
to be necessary to 1imit the magnitudes of the rotations through the use of
coordinate systems which follow the elements throughout the entire deformation
process, and correspondingly to omit terms in the strain displacement equa-
tions of the type underlined above. A system of cartesian, updated, element
baseplane coordinate systems was developed for this purpose. The rotations
which occur during a given load step are small, and after the step has been
computed, and the cartesian baseplane coordinate systems updated, the total
rotations of the material elements relative to their updated coordinate sys-
tems remain small. Thus, total strains can be computed accurately with all
nonlinear terms of the types underlined above omitted from the membrane strain
equations. In use for finite element analysis with reasonably small elements,
this approach guarantees that element material slopes will always be small
relative to the baseplane of reference. Hence, it is possible to use a shal-
low shell type of deformation definition, with its attendant simplification of
formulation. This is a significant gain for the nonlinear elements under con-
sideration, since nonlinearities develop through accumulated element slopes
rather than through cumulative changes of the shell geometrical parameters,
referred to, say, a lines-of-curvature coordinate system.

poloynomials in e
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The baseplane following coordinate system procedure is illustrated by Figure 2. )
In this figure, coordinate axes (x s 2 ) are used to set up the equations for f
the first load step, which’ term1nates w1th the element in the position f
described by the updated axis system (x], 21)° Similarly, load steps two and
three cause displacements to the positions described by the updated systems

(xz, 22) and (x3, 23), etc. In updating the coordinate systems in this way,
the total displacements of the element are transformed to the new axes, with
only the rigid motions removed. Used in conjunction with a Lagrangian strain
definition, this approach is best termed a "start-over-total-Lagrangian"
approach, since total strains are repeatedly computed from new starting orien-
tations. The displacement transformation is not a straightforward geometrical
transformation of displacement increments in the usual sense. Instead, it is

a special transformation based on the idea of computing total element displace-
ments, referenced to the updated coordinate system, measured between the

L deformed element position and an undeformed element suitably mapped onto the

updated system. This procedure assures that total strains can be correctly
computed using the transformed displacements referred to any updated coordi-
nate system. Figure 3 illustrates the basis of the transformation for the
simple case of a beam element. An element is shown referred to an initial
coordinate system (xo, Zo) and, after a deformation step, to an updated system
(x], z]). The undeformed shape of the element is shown on both coordinate
systems; the element end points always lie on the x-axis. Displacements are
defined to be the vector differences between points on the deformed and
undeformed elements, referred to the particular coordinate system in question.
This definition suffices for the calculation of strain. The element in system
(xo. zo) has accumulated displacements which, through prior transformations,
are referred to this system. Thus, for a point P, the accumulated displace-
ments can be denoted by the vector notation

e

(p.W)

In which the subscripts denote both the reference system and the point P. The
Fop incremental displacements which occur during the present step are also referred
to the (xo, zo) system, and are

B
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» W, )

(Au op

The position vector of point P on the undeformed element in the (xo, zo) sys-
tem is denoted by

(xop, zop)

Thus the point.P after the current step has the position

) * (&

(xop’ zop) + (uop’ Won Uop> Awop)
Referred to the (x], z]) system, the position of point P on the undeformed
element is denoted by

———l

(x]p. z]p)~

It is noted that the individual components satisfy x]p = xop and z]p = zop’
since these values refer to the undeformed state. The total accumulated dis-

placements at the end of the step, referred to the (x], z]) system are

(uyps wyp)

The definitions of these components are as shown on Figure 3. The position of
point P can now be given in both coordinate systems. Equating these necessarily
identical vector quantities gives

(X,Z)(

Ugp: wop) + (Auop, Awop) =R+ (x]p, z]p) + (u]p, w]p)
where R is the translation of the origin. This equation is solved for (u]p
w]p), in component form, by employing the appropriate unit vectors of the two
coordinate systems and forming dot-products with both sides of the equation.
Differentation of the vector components u]p and w]p, with respect to the
updated baseplane coordinates, treated as material coordinates, yields trans-
formed displacement derivative freedoms, if required, and also all of the
quantities required for calculation of the total nonlinear strains. A detailed

10




set of equations of this transformation procedure is given in Reference 1. It
is seen that this system of treating displacements handles the element displace-
ment functions as disb]acements in the directions of the convected baseplane
coordinates. Each incremental displacement consists of element displacement
function increments referred to an updated element baseplane.

There is an equivalent alternative to the above approach for the direct calcu-
lation of purely nodal displacements. This is to maintain cumulative nodal
displacement values referred to a fixed global coordinate system, and use
these values to transform back to the successively updated element systems.
Such a procedure is a useful part of the solution procedure in any case,
because the global values are a convenient means of determining the orienta-
tions of the successive element baseplanes. However, this procedure does not
provide nodal displacement derivative freedoms, which are needed for some types
of elements. Both methods are used, as appropriate, in the computer coding of
the two elements under study in this contract. The triangular element (based
on the BCIZ element, Reference 5) uses nodal derivative freedoms. For this
element, the above described transformation was found essential for transform-
ing the derivative freedoms. The quadrilateral element (based on the AZI
element, Reference 6) uses nodal displacements and nodal rotations as free-
doms. For this element, since rotations rather than derivative freedoms are
used, a different type of transformation was.required. This particular trans-
formation was developed during the checkout of the quadrilateral element, and
is outlined below.

Figure 4 shows a portion of a deformed element of the AZI type, in which trans-
verse shear deformations are permitted. For simplicity a beam element is con-
sidered here. The displacement state of the element is referred to its succes-
sive baseplanes. The start-of-step baseplane is denoted here by the Xo axis,
and the end-of-step baseplane by the X1 axis. The displacement quantities for
the start- and end-of-step states, for a point P on the midline of the element
and for the fiber PS, defined to be the original normal to the midline in the
undeformed state, are indicated in the figure. The subscripts refer to the
coordinate system to which the displacements are referred. The transformation

described earlier in this section permits the calculation of w]p from the values

n
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+ AW Here we are concerned with the determination of e] from the

w 5
op op
values of 6__ and Asop' A procedure which immediately suggests itself to

make this dggermination is a simple subtraction of angles, including the angle
change between the successive baseplanes. This is not the procedure used,
however. Instead, the method developed is based on representing the material
vector PS in the successive coordinate systems and deducing the needed angles
from its components. This method is convenient in the three dimensional case,
and also incorporates the effects of the rotations on the z-variation of the
bending displacement, w. This was found essential for accurate calculation
of nonlinear strains. The transform step is briefly described here, since it
is not considered in Reference 1. The method described here is used in the
éomputer code for the quadrilateral element. A more exact procedure, which
would be required for larger single step displacements or for shell elements
joining non-tangentially, is described in Section 2.4. We assume as before
that all local and single step angles and strains are small compared to unity
and that 6 and sin 6 can be taken as equal. Then the vector PS in the Xo
system is given by

Y: el ~oz

PS = |PS| - L eopy, -eopx, l-eopy-eopX J . Yoy
\Y
(0

where |PS| is the original length of PS, subscripts x and y denote rotations
about the Xo and Y, axes, and the vectors v are unit vectors in the Xo system.
The assumption that the incremental angles of rotation are sufficiently small
to be added in any order is implicit in this equation. The third component
of the row vector retains the squared terms in order to included the effect
of foreshortening of the normal due to its rotations. For simplicity we
abbreviate this equation as follows

PS = [PS| - Lo d - {V}

After the deformations of the current step,

¢

pR—

S+ aPS = |PS| - Lo + a0 J “{ v}

©
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|PS| is unchanged because the condition of inextensible normals is imposed.
This condition, and its use in determining the nonlinear transverse shear
strain, discussed later, are the reasons for retaining the two squared terms

in the z_ component, 4/1-6

0 opy'eopx ’

The vector PS + APS is easily transformed to the X] system by means of a
direction cosine matrix of the cartesian coordinate transformation Xo— X1 -
Denoting this matrix by [A], there results i

—_—

P+ iP5 = Loy + 00,1 D { T} = Loy 1+ {

The definition of [A] consistent with the above equation is

i © iz o1 T Vi3
) 1% % TR o et i
—o.\-,—s \T..-—b —¢.—¥
Vo3 n 83 ° V12 g - M1

in which the indicated operations are scalar products and the subscripts of
the unit vectors refer, respectively, to the coordinate system to which they
belong, and their particular component direction, in the order x, y, z. The
updated vector{c} is thus given by

0, = [J\]T{eo + Aeo}

and the needed values e]py and e]px are obtained as the first component and
the negative of the second component of {e]}. The matrix [A] is readily
obtained in the computer code from the product of the transformations between
the element baseplane coordinate systems and the global coordinate system,
for the start-of-step and end-of-step conditions.

The bending displacements, w, are also transformed between the start-of-step
and end-of-step systems. The result of this transformation, in conjunction
with the known displacement shape functions of the element, permits calcula-
tion of the bending slope quantities Wiy and w,y, referred to the end-of-step

13
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system. In doing this, the original element dimensions and shape are used,
consistent with the approach of using material coordinates and obtaining a
nonlinear strain of the Lagrangian type. The element w-displacement functions
are considered to be convected to the updated baseplane coordinate system, in
order to determine the derivatives Ws o and w,y. The end-of-step values of Wsy s
w,y, and the rotations, epx and epy, suffice to obtain the total nonlinear
transverse shear strain. Further details of this calculation are discussed

below,

Shell Strain-Displacement Equations

A final item will complete this description of the conceptual basis of the two
shell elements under study. It was noted earlier in this section that, to
obtain a workable theory for stepping out nonlinear solutions, it is preferable
to update the element baseplane in order to maintain a small angle relationship
between the element and its reference system. The resulting availability of
the updated baseplane strongly suggests the use of a shallow shell theory in
which the displacements and forces are referred to the cartesian baseplane
system rather than to the shell intrinsic curvilinear system. The simplifica-
tions obtained in this way are particularly helpful for nonlinear problems.
Consequently, it was decided to base the element development on a shallow shell
type of theory, using cartesian displacement definitions, with baseplane
updating to permit extension to the large deflection regime. Since shallow
shell theories do not as a rule use purely cartesian displacement definitions,
it was necessary to derive a new set of equations, starting from basic princi-
ples. To do this, a tensor approach was used, and the strains were derived
from the changes of the metric tensor between the undeformed and the deformed
states. This is a superior approach, which naturally provides all of the
nonlinear effects of large displacements, without recourse to the more conven-
tional geometric-deductive procedures. The derivations for the triangular
(Kirchhoff-type) and quadrilational (transverse shear strain included) elements
are given in Reference 1. Numerical work has pointed to a very important
result of this overall procedure. The use of cartesian displacements, specifi-
cally the w-displacement, leads to a much different definition of the direct
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membrane strains than the conventional theory (both deep and shallow shells) in
which w is normal to the shell midsurface. Conventionally, the membrane strain
includes terms such as w/R, where R is a shell midsurface radius and w is
normal to the midsurface. This term is replaced, when cartesian displacements
are used, by terms like w,g * Wiy where w® is the initial w-shape of the shell
element, referred to its baseplane, and the commas denote differentiation. For
a given w distribution over the element, these two terms provide very different
forms of contributions to the membrane strain. They are made equivalent by
differing forms of the membrane displacement, u, which contributes the term Us,
to the strain. It can be reasoned that, for conventional strain equations,
used in a finite element application, the membrane displacements are called
upon in part to supplement the bending displacement in order to achieve satis-
factorily strain-free rigid body motions of the elements. This generally
requires very competent membrane displacements, particularly for low energy
deformations such as inextensional bending. For the cartesian-based strain
equations, rigid motions are automatically obtained, and the membrane displace-
ments are called upon to supplement the bending displacement in order to achieve
smoothly varying membrane strain states. In both cases, the use of membrane
displacements of higher polynomial degree than the bending displacements is
required for accurate solution of a wide class of shell problems. All of the
above pertains to the case of linear analysis, and is governed primarily by the
effects of shell curvature. For nonlinear analysis, a similar situation exists
except that the membrane functions must be sufficiently competent to handle
large rigid motions and changes in shell geometry (curvatures, twist) in their
efforts to achieve stress-free rigid motions and smoothly varying strain states.
{t is noted at this point that the HMN functions, which increase element mem-
brane displacement competence, are beneficial for linear and nonlinear analysis
with shell theories of either the conventional or the cartesian-based types.
Example problem #1, Section 2.4, is a case in which the HMN functions are
crucial to an accurate problem solution in the linear case.

In approaching the derivation of the shallow shell type of nonlinear strain
equations, consideration was given to the results of Reference 7, in which it
was shown that shallow and deep shell theories can give very different results
for certain types of problems. It was decided that it is the absence of
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.certain types of forces in the membrane, i.e., baseplane, equilibrium equations
of conventional shallow shell theory which leads to significant errors in
particular problem solutions (Reference 7). The terms in question are the
products of the transverse shear forces with the shell midsurface slope angles.
These products provide membrane-direction forces, resulting from the transverse
shear forces. These are omitted in conventional shallow shell theory as a part
of the basic assumption that the transverse shear forces are small. They.can
be either retained or omitted in the cartesian-based theory, depending on
retention of certain small terms in the strain-displacement equations. The
types of problems in which the error due to this omission can be large are
those in which there is strong bending combined with small membrane stress
levels, either over the whole shell or in critical local regions. It would
appear that nonlinear large deflection behavior would accentuate these errors,
for two reasons: large deflections are most likely to occur in strong bending
rather than strong membrane deformation problems; the rotations of the large
deflection state will increase the importance of those force components which
are conventionally ignored in the shallow shell theory. Consequently, shell
equations were derived which retain the simplifications of shallow shell theory
without omitting these particular terms in the equilibrium equations. The
terms which were retained in the strain-displacement equations are in the
definitions of bending and twisting deformations, and involve products of
membrane displacement gradients and shell curvatures and twist. Both initial
and subsequent curvature and twist are involved, so that the added terms serve

to incorporate nonlinearities into the bending and twisting moments. Details
of this derivation and the strain-displacement equations are given in Reference
] . ' )

During the numerical evaluations of the quadrilateral element, it was found

that physically unexplainable large residual lateral forces and transverse

shear strains occurred in nonlinear bending problems. The cause of this
| behavior was traced to certain omitted nonlinear terms in the transverse shear
strains, as derived in Reference 1. The original derivation included the
products of the rotations with the membrane displacement gradients, but omitted
terms involving products of the bending slopes with the z-direction derivatives
of the bending displacements, i.e., the terms Wy, oWy and wﬂz-w,y. These terms
“ were omitted on the basis that all displacement z-derivatives were dropped in

e e
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the original derivation, through direct use of the rotations of the normals, J
ex and ey. However, it can be easily shown that the retained nonlinear terms,
UssB sUss0 3V500 s and v,yey, are in most problems very nearly cancelled by the 1

ARty Xy
omitted terms, Wy, W, and w,

% s ! w,y, in the nonlinear strain equations for
the transverse shear strains. Thus, the omission of the latter terms resulted
in large nonlinear contributions to the transverse shear strains, producing
corresponding large residua]ishear forces. Coupling with the bending slopes
caused serious loss of accuracy and convergence difficulties in nonlinear
problems. When the omitted terms were included, the transverse shear strain
was reduced to reasonable values, and the difficulties with the residual loads

were eliminated.

To retain the effect of W, in an element which retains only the freedoms u, v,
W, ex, and ey is a somewhat difficult task. The value of W, was constructed
from the condition of inextensional normals and the values of ex and ey, and

has the form, for small incremental rotations,
e = L fa2 4 82
Wiz 7'(ex % ey)
Hence, the terms Woy® Ws, and w,y- W are cubic in the displacement magnitudes.
The basic strain formulation of the elements (Reference 1) is of the second
degree in the displacements, and does not readily permit including the cubic
terms. Consequently, the added nonlinear terms were included in the calcula-
tion of strains, stresses, and residual loads, but not in the formation of the
element stiffness matrices. This type of approximation may siow the conver-
gence of stepping/iterative calculations, but does not affect the accuracy of

converged solutions. In future work it would be desirable to include the extra
terms at the stiffness matrix generation stage of the calculations.

2.2 Computational Procedures

This section outlines the sequence of the computational procedures used for the
two shell elements, with particular emphasis on those calculations which are
unique to the stability elements and to the coordinate system updating used.
Details such as equations and matrix definitions are given in Reference 1.
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The purpose here is to describe the overall scheme and magnitude of the compu-
tational effort.

Coordinate Systems

-

Each element uses three principal coordinate systems: the baseplane system;
the "solution" systems, which are cartesian nodal systems; and the global
system. These ére illustrated by Figure 5. The solution systems are nodal
triads which are averages of the joining element baseplane systems. During

a single solution (load) step, a single solution system is used without
updating, for each node point of the structure. The solution systems are
updated at the outset of each solution step. Iterative corrections to the
equilibrium state are made within each solution step, based on residual loads
| evaluated at each iteration. Each residual load evaluation utilizes an updated
' - element baseplane for the evaluation of the strains, stresses, and residuals.

é . That is, the displacements of the previous iteration are used to update the
element baseplane, the total deformation state is transformed to the updated
baseplane, and total nonlinear strains and stresses are thereby computed.

The virtual work integration, for the residual load evaluation, uses virtual
displacement increments which are likewise referred to the updated baseplane,
and are increments from the total deformation state referred to that baseplane.
The repeated updating of the baseplane systems at each iteration is done to
assure an accurate calculation of the total Lagrangian strain, even though the
displacements and rotations of the step may be large. This is probably not
necessary for well-posed stepwise loadings, and may be a candidate for code
simplification in the future. The final updated baseplane systems of a given
load step, i.e., those corresponding to the converged solution for the step,
are the start-of-step baseplane systems for the next load step. Figure 6
illustrates schematically the use of these coordinate systems in a two step
problem. The figure also gives the names of the transformation matrices
between the coordinate systems, for later reference, and indicates thereby
which transformations require updating for new load steps and for iterations
within a single load step.

o
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For the triangular element only, one other transformation of a coordinate sys-
tem type is required. This transformation makes the transition between the
so-called "deformational" freedoms of the original derivation of this element
(Reference 5) and the baseplane-referenced freedoms which are used in the
transformations [TD] (see Figure 6). It is called "TSTAR.”

For the quadrilateral element only, the conventional isoparametric transfor-
mation is used to determine the strains of the general element from the shape
functions and derivative formulas of the parent element referenced to its
cartesian coordinate system. This transformation does not appear in Figure 6
because it occurs at an earlier stage of the calculations.

Stiffness Matrix Transformations

The stiffness matrices of the elements are initially derived in the baseplane
coordinéte system and include all freedoms of the element. For the quadri-
lateral, these total 58 freedoms, of which 40 are nodal freedoms which are
retained for the final problem solution, and 18 are HMN freedoms, of which
10 are eliminated by explicit strain constraints, 4 are deleted to avoid
probable inter-element incompatibilities, and 4 are eliminated by a minimum
energy constraint. All constraints are on the elemental level. For the
triangular element, there are a total of 51 freedoms, of which 27 are nodal
freedoms which are retained for the final problem solution, and 24 are HMN
freedoms, of which 6 are eliminated by explicit strain constraints, 6 are
deleted to avoid verified inter-element incompatibilities, and 12 are elimi-
nated by a minimum energy constraint. A1l constraints are at the elemental
level. The stiffness matrix transformation sequences are shown on Figure 7
for the two elements. The degignatfons on the figure have the following

meanings:

HMN This is the transformation which imposes explicit constraints on
the higher polynomial strain terms. It operates on the stiffness
matrix as a conventional generalized coordinate transformation of
the form CTKC.

DELETE This is a simple removal of rows and columns to eliminate freedoms

which might cause inter-element incompatibilities.
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- This is a conventional stationary potential energy reduction
performed on the elemental level.

TSTAR - This is a generalized coordinate transformation performed to
change from the BCIZ "deformational" freedoms to freedoms which
have a consistent sign convention and permit rigid body motions
of elements.

- See Figure 6. This puts freedoms into the solution coordinate
systems.

MERGE - This is a conventional merge of elemental freedoms to obtain
structural equilibrium equations.

- The stiffness matrix is formed at the outset of each load step, as indicated
on Figure 6. The solution proceeds with iterative corrections within the
step until either convergence is obtained or an input iteration limit is
reached. In the latter case, the stiffness matrix is reformed, and all trans-
formations performed again as indicated on Figure 7. The stiffness matrix
formation and transformation accounts for about 75% of the computational time
on the small problems studied to date. :

Loads Transformations

" The elements in their present form accept only nodal load inputs. These are
input in the global system, and can be used directly in problem solutions
after a coordinate transformation using TCAP (see Figure 6). However, the
computation of the residual loads for iteration is done with all of the
element freedoms, and the resulting load vector must be transformed and
merged through the same steps used for the stiffness matrix. Thus, Figure 7
applies also to the transformation of the elemental residual loads. It should
be noted that the elemental residual loads are computed with reference to the
most current updated element baseplane. Hence, the TD matrix used (Figure 7)
must be the most recent update of that matrix. The MPE transformation of the
loads is the conventional one which creates a partial load vector which is

i | saved, to be used later in the back~substitution solution of the displacements.
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[. The loads transformations are done for every iteration within the load step, in
contrast with the stiffness matrix calculations, which are dene much le:s
frequently. :

Displacement Transformations

The incremental solution of a load step or an iteration is initially referred
to the solution coordinate systems (Figure 5, 6). A number of transformations
and other calculations are made on these incremental values, as shown by Figure
8. The figure shows the incremental solution, consisting of nodal displacement
quantities and called 89, 1ution coords® 35 the starting point of the data
reduction procedure. The calculations initially proceed along three separate
paths: (1) TCAP is used to transform the increment to global components and to
update the global coordinates, element baseplanes, and transformation matrices

- associated with the baseplanes; (2) the incremental. solution is transformed to
the start-of-step baseplane, using the old TD matrix, and then summed with the
prior'accumulated nodal displacements referred to this baseplane; the total
displacements are transformed by means of the RDOT matrix to obtain total nodal
displacements referred to the updated baseplane; (3) the incremental nodal dis-
placements referred to the start-of-step baseplane are used in back-substitution
to obtain the minimum potential energy (MPE) incremental freedoms, Aa, which are
then summed to form the running total of these quantities. At this point the
calculation paths merge and the explicit strain constraints (HMN conditions) are

imposed, using total rather than incremental! strains, and directly computing

" total HMN freedom values. The results at this point include the accumulated
nodal displacements ¢, referred to the updated baseplanes, and the total
accumulated MPE and total HMN freedoms, a and 8. These data suffice to compute
strain, stress, and residual loads. The loads are transformed as discussed

above, merged to form overall structural residuals, and tested for convergence.

If convergence has not been obtained, a new increment of nodal displacements,

designated as A(Aq)solution coords® is computed, using the same solution coordi- :

nate system and stiffness matrix as were determined at the start of the step. ;

If convergence has been obtained, the solution coordinate systems are updated, |

and new TCAP and new stiffness matrices are generated. In addition, a number

of data arrays are saved, as indicated on the figure. In some cases, if con-
i' vergence is slow, the stiffness matrices are updated without obtaining
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convergence. In this case, since the residual loads remain referenced to the
old solution coordinate system, the latter, and TCAP, are not updated. This
particular option amounts to a forced "yes" answer to the convergence test,
except that the TCAP is not updated. The advantage of updating the stiffness
matrix is due to properly accounting for the effect of element deformed shape
on element stiffness, and to accounting for element orientation (updated base-
plane) relative to the solution coordinate systems.

The HMN transformation, as used in stiffness matrix transformation, is derived
for use by incrementation. However, the actual calculation of the HMN free-
doms is a total rather than an incremental calculation. Prior to the data
processing of Figure 8, HMN constraint matrices in terms of total rather than
incremental strains are formed, by simpie changes in the earlier-generated
incremental matrices. Total HMN freedoms are then calculated, avoiding cumu-
lative error in these freedoms. For the quadrilateral only, the HMN matrices
are also updated prior to this calculation, to account for the total bending
deformation accumulated to the current point of the iterative calculations.
The need for this updating is due to the fact that the quadrilateral basic
displacement shapes are only second degree forms. Hence, the basic membrane
strain states are linear, and cannot compensate for nonlinear effects due to
the simplest, i.e., constant curvature and constant twist, lateral displace-
ments. The triangular element, on the other hand, having basic displacement
forms which are cubic, can at least partially compensate for nonlinear effects
due to the simplest bending deformations with its basic membrane strain states.
The updating of the HMN matrices was not necessary for the triangular element.

2.3 Solution Procedures

Solution procedure development has required a large amount of effort in the
present research, even though the primary aim of the work has been element
evaluation and improvement. The cause of this is in the nature of the resid-
ual loads. In elements of the types under study, in which nonlinear strains
due to relatively large bending displacements are included during each solu-
tion step, very large membrane stresses and membrane residual loads occur.

In combination with the bending slopes, these residuals create residual
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bending loads and mcments which usually completely dominate the bending

behavior of the structure. This behavior becomes more severe as the plate

or shell becomes thinner, corresponding to the increasing ratio of the mem-
brane stiffness to the bending stiffness. In general, the bending residual
loads are in the proportion (A/r)2 to the applied bending loads, where A is
the def]gction magnitude and r is the section (or plate/shell) radius of
gyration. The bending residual loads are distributed over the structure,
among the different elements, according to the local magnitudes of the slopes.
Hence, in performing a residual load iteration, the bending displacement
adjustment tends to be much larger than the initial displacement, and is
distributed quite differently over the structure. If the iterative adjust-
ment is accepted at its computed magnitude and distribution, generally a
grossly distorted deformation state and greatly increased residual load values
result. This type of behavior almost always causes divergence of the solution
procedure. This situation is in marked contrast to the behavior which occurs
in analysis approaches in which residual loads are either not computed, or
are computed by approximate methods which effectively omit the effects of the
nonlinear straining which occurs during the increment. In these approaches,
the residual loads are small, and convergence is generally rapidly achieved. How-
ever, for strongly nonlinear problems, such approaches generally yield solu-
tions which diverge increasingly from the correct solution, as the magnitudes
of the nonlinearly-induced strains increase.

The simplest way of improving solution procedure behavior, in fully nonlinear
analysis, is to scale the magnitude of the iterative correction increment.
Procedures often are coded with factors such as 0.5, for example, to be

applied to these increments. Though this may at times be successful, it is

an unsatisfactory method in two ways: the proper scale factor generally varies
widely during a complete problem solution; the method fails to address the

fact that the iterative increment is distributed incorrectly over the structure.
These two difficulties are the principal obstacles to achieving a rapidly con-
verging stepwise/iterative procedure for nonlinear analysis. It is required

to achieve "intelligent," programmed procedures for controlling the size of the
jterative increment, and also for contro]1ing its "shape." The concept of
"shape," as used here, includes both the distribution of deformations over the
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entire structure, and also differences in deformation magnitudes between
different types of‘deformation, e.g., membrane as opposed to bending motions,
etc. The present research has developed primitive, but effective, procedures
for dealing with these two difficulties, and has thereby achieved convergence
in problems which, in earlier, conventional versions of the solution procedure,
were not solvable.

Subsequent paragraphs will describe the developed solution procedure. However,
it is worthwhile to digress at this point in order to consider the implications
of this work with regard to stepwise-linear solution procedures in general. It
has been demonstrated by the solution procedure work of this research that both
magnitude and direction are incorrect in stepwise-linear solutions of nonlinear
problems. The errors begin with the initial application of load, and continue

through. all iterations and subsequent load steps. It has also been verified

that updating the stiffness matrix tends to alleviate these difficulties.
Clearly, the basic source of the error is in the stiffness matrix itself, both
as regards overall stiffness magnitude, and as regards stiffness coupling
effects between different deformation types, particularly between membrane and
bending displacements. This total problem would be solved by using a nonlinear
stiffness description of the structure, i.e., by using a stepwise-nonlinear
approach for the solution of strongly nonlinear problems. Such an approach is
available, and is described in References 8 and 9. It is termed the "static
perturbation” method, and achieves fully stepwise-nonlinear performance without

_ a great deal more computational effort than the conventional stepwise-linear

approaches. For many problems, the stepwise-nonlinear approach would. very
likely be less expensive as well as more reliable, since fewer iterations and
fewer stiffness matrix updates would generally be required.

Solution Procedure--Convergence Acceleration

The overall solution process consists of a set of load steps, within each of
which is a set of iterations, each of which is based on the residual loads
corresponding to the immediately previous displacement state. This latter
state may result from either an input load step application or an iteration for
a residual load application. The first significant improvement in convergence
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resulted from performing iteration steps which alternately permitted all struc-
tural freedoms to respond, or, alternatively, permitted only the membrane free-
doms to respond. In this case, the membrane freedoms are those approximately
parallel to the plate or shell surface, as defined by the solution coordinate
systems (Figure 5). The effect of the membrane freedom iteration was to allow
the structure to relieve much of the nonlinear strain and stress induced by

the previous bending displacement increment. This nonlinear strain and stress
relief serves to greatly reduce the magnitudes of the residual loads, with the
result that the following (all freedom) increment will have much smaller bend-
ing displacements, and, hence, much less further nonlinear strain and stress
generation. The purely membrane increment can be thought of in two ways: as

a post-increment correction of the "shape" error of the previous all-freedom
increment; and as a plausible physical action, which a plate or shell structure
would naturally undertake to relieve equilibrium imbalances and achieve a
reduced potential energy level. These are distinct, but, of course, basically
equivalent interpretations. This solution procedure feature influenced
deformation shape in a primary way, and, through residual load reduction,
influenced increment magnitude secondarily. Convergence was thereby obtained

for problems which had previously diverged except for very small load increments.

It was found, however, that for some problems the residual loads still tended
to be large enough that convergence was not obtained except for small load
steps. These problems were generally those with more elements or problems in
which the overall structural stiffness depends strongly on displacement magni-
tude (e.g., the un-prestressed membrane problem). The basic difficulty was
felt to be in the magnitude of the displacement increments, and how they

were distributed over the structure.

To improve this aspect of the convergence, a procedure was implemented in
which, in the all-freedom iterations, the amplitude of the increment was
arbitrarily varied over a certain range, say 50% to 150% of the computed value,
and a state of minimum residual -was sought. For this purpose a measure of the
residual based on a root-sum-square over all the residuals was used. The
minimum was sought on the basis of a quadratic fit of the residual-measure
versus the amplitude factor. This procedure performed well several times, but
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in general had the characteristic of extremely slow convergence. The reason
was found to be as follows: the residual-measure for all amplitudes of the
all-freedom increment (say, 50%, 100%, and 150%) generally exceeded the value
of the residual-measure of the previous membrane-only increment, in rough
proportion to the magnitude factor. Thus, a minimum residual was not found.
The solution procedure was coded to reset the range of the search, to, say,
25%, 50%, 75%, and repeat the calculation. Generally, the failure to find a
minimum repeated itself. Ultimately, the procedure accepted a very low ampli-
tude factor for the all-freedom increment, and thus failed to make appreciable
progress toward convergence.

The basic cause of these difficulties was the "shape" of the all-freedom incre-
ment, specifically the incorrect amplitudes of its membrane as compared to its
bending freedoms. To remedy this, a repeated use of the membrane-only incre-
ment was implemented as follows:

For each amplitude of the all-freedom increment, (say, 50%, 100%, 150%),
residual loads are computed, and, based on these new residuals, a membrane-
only increment is computed and added to the factored all-freedom increment.

Total displacements, residual loads, and the residual-measure are recom-
puted for thjs "double increment", and this residual-measure is identified
as belonging to the particular amplitude factor used.

The search for a minimum residual-measure is done using these "hybrid"
residual load states and residual-measures.

The chosen amplitude factor is used for a final, fourth-time calculation,
of the displacement increment and the residual loads. This calculation
also uses a membrane-only substep.

In using this procedure, the single, membrane-only increment is no longer
necessary and it was removed from the solution procedure. The double-search
calculations are done for each load increment application as well as for the
residual load iterations.
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This procedure has been successful on all problems to which it has been
applied. It is by no means a fully optimized procedure, and it is clearly
primitive and costly. Nevertheless, it has provided convergence for previ-
ously badly divergent cases. It is felt that the principal importance of

the procedure is that it verifies that increment "shape" control and amplitude
control are both required, on a per-increment basis, to obtain convergence to
a general class of strongly nonlinear problems. This has led to the strong
conviction that some type of'stepwise nonlinearity, based on a stiffness
matrix which varies within each increment, is essential to cost-effective
solution procedures for strongly nonlinear finite element analysis.

Several other items were found to be necessary for convergence, in addition
to the overall method described above:

The stiffness matrix requires frequent updating, particularly while
relatively large bending displacement increments are occurring. This
greatly improves the quality of the computed increments.

The stiffness matrix updating includes a re-calculation of the geometric
stiffness matrix. In this calculation, the stresses of the previous
converged steps are used until the membrane stress state has recovered
from its initial large, nonlinearity-induced, excursion. The residual-
measure magnitude is used to control this decision process.

The residual measure has been modified to consider only bending direction

~ (w, ex, ey) residuals. This was found essential to prevent the search
(optimization) procedure from optimizing toward zero membrane residuals
at the expense of the bending residuals. This did occur, and caused

convergence toward very small displacement amplitudes, in some cases.
The iterative increment is checked numerically to assure that it does not

exceed the basic increment magnitude of the load step. If it does, it is
scaled overall, prior to the search calculations.
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If the search calculations do not find a minimum residual-measure, the
l appropriate end of the search range is accepted as a satisfactory ampli-
tude factor. This has proven satisfactory, and saves computation time
' compared to a complete search range change and re-calculation.
[

Increment rotation magnitudes are checked, and the increment is prevented
from rotations large enough to violate the incremental small angle

assumption (about 20°). |

Solution Procedure--User Input

Because different types of nonlinear problems are best handled with somewhat
different calculation sequences and details, certain data can be input by the
, , user, as controls over the solution process.

The degree of refinement required for converged solution states is an input
item. Too small a tolerance on this value can increase computer costs excessively.

The number of iterations to be performed before the stiffness matrix is
updated is controlled by user input. Thus, for example, a set of values such
as 1,2,2,3 specifies that, after the load step application, the stiffness
matrix is updated immediately. Thereafter, two iterations are performed, the
stiffness is updated, two more iterations are performed, etc.

The total number of permitted stiffness matrix updates is specified by the
user. Since the updates are major computer cost items, this provides user
control over costs of solutions which, for some reason, are converging too
slowly.

The search range for the "double-search" procedure is controlled by user

I input values of the center point and the range on either side over which
, the search for minimum residuals will be performed. Thus, for example,
g'I the values of .80 and .35, respectively, will cause the search for the
l 28
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minimum residual state to take place with amplitude factors .45, .80, and

1.15. This control is particularly useful for structures which are known
to stiffen or soften markedly as they accumulate deformation.

In order to handle problems with either "following" types of boundary con-
ditions, or with conventional boundary conditions, the user can input par-
ticular fixed axes with respect to which boundary conditions will be
imposed. These are referred to the global system. Alternatively, the
solution coordinate system triads, which are convected with the deforma-
tion can be used to enforce boundary conditions.

In addition to the above, of course, the user may elect to insert zero load
steps. These steps cause a general cleanup of all coordinate system trans-
formations and data updating. This has not been found necessary in the prob-

lems solved to date, with the most recent solution procedure.

Finally, the program has been structured to allow operation in the HMN-mode,
or as a conventional nonlinear program (using the basic AZI and BCIZ elements).
This has permitted comparisons of HMN and non-HMN element performance.

2.4 A Consistent Transformatibn for Finite Rotational Freedoms

With isoparametric shell elements of the AZI type (Reference 6), or with corre-
sponding types of curved beam elements, a general finite element model will
have three translational and three rotational freedoms at each mode. . The
three, rather than two, rotational freedoms at each node are required in order
to handle elements which intersect at other than 180-degree angles. (Three
rotational freedoms are also required if beam torsional behavior is to be
included.)

The translational freedoms may be transformed between the solution and element-
baseplane coordinate systems, using a simple 3x3 matrix of direction cosines,
and that transformation may be applied exactly to finite incremental or cumula-
tive translations. In the case of finite rotations, however, the resulting
configuration is dependent upon the order in which the rotations are performed.
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This order dependence cannot be considered when incremental rotations are
calculated during the usual matrix solution procedure (there the rotations
are considered to be infinitesimal). After a series of such rotation incre-
ments are calculated, transformed from solution to baseplane systems, and
summed to cumulative values, an inconsistency develops relative to the
deformed configuration of adjacent elements. That is, a cumulative error is
created which is equivalent to the existence of physical gaps (slope discon-
tinuities) between elements. This inconsistency affects the residual-force
equilibrium computations, so that it cannot be eliminated by the iteration
procedure.

In order to develop a consistent transformation for the rotational freedoms,
imagine that at each node the following entities exist.

1) a small, rigid globule of material
2) an arbitrarily defined solution-coordinate-system triad X-Y-i

3) a unit normal vector N for each (Ith) element joined to this node (the
initial orientation of NI in the undeformed configuration is normal to
the Ith element baseplane)

These three entities are rigidly attached together, so that they translate
and rotate as a single rigid body during successive load increments. Figure
9a illustrates the concept for the simple case of a node where three curved-
beam type elements are joined. The three entities and the adjoining elements
are depicted there in the initial undeformed configuration. Figure 9b shows
one of the elements in a later deformed state, with a new vector N which we
define as being a unit normal to the deformed baseplane. Because ﬁ has rotated
with the rigid material giobule at the node, and this rotaEion is in general
different from that of the element baseplane, the vectors N and N are not
parallel. The difference between these two vectors (ﬁ-N) will provide a
convenient measure of the element nodal rotations.
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Specifically, the consistent element rotations are determined according to é
the following steps. i

1) Given start-of-increment solution coordinate triad X°-Y°-Z° at a node.
This triad can be used as the base vectors for expressing other vector
quantities.

2) Perform the matrix solution procedure to obtain nodal incremental transla-
tions and rotations (expressed in terms of X°-Y°-Z° system triad). !

3) Using the nodal translations, determine new element baseplane orienta-
tions and associated normal vectors N.

4) Using the nodal incremental rotations, calculate new end-of-increment
solution coordinate triad X'-?'-i' at a node. (This calculation is
somewhat arbitrary due to the order dependence of finite incremental
rotations. However, the new triad will be used consistently for all
elements joining the node, so that any error introduced will be elimi-
nated by the residual force iteration.

5) Since N is rigidly attached to the solution triad, it is given in terms
of X'-Y'-Z', and can then be transformed to the base vectors X°-Y°-Z°.

6) Cumulative element nodal rotations are then computed from the difference
(ﬁ-N), by taking its vector dot product with the element baseplane
coordinate axes.

This procedure allows the calculation of cumulative element nodal rotations,
which have no cumulative error. That is, they are consistent among all
elements adjoining the node, so that no slope discontinuity effects are
allowed to accumulate. ' i
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2.5 Discussion of Numerical Results

The triangular and quadrilateral HMN elements have been used to solve a large
number of simple problems. The early numerical work dealt principally with
the triangular element, and demonstrated that the performance of this element
was satisfactory, both in overall element linear and nonlinear behavior, and
also in regard to the HMN-related behavior. Example #5 of this section
illustrates this work. It was decided on the basis of this work and early
experience with the quadrilateral element that the latter is the better
element of the two by a wide margin. Consequently, the majority of HMN-
element evaluation was done with the quadrilateral. This work is covered by
examples #1 through #4 of this section. The basic difficulty with the HMN-
BCIZ element is believed to be related to a known deficiency of the basic BCIZ
element, namely, that it fails to maintain inter-element slope conformity.

The goals of the numerical evaluations are as follows:

To understand the basic behavior of the elements, considering particu-
larly the influences of coordinate systems, the HMN function activity,
and the effects of initial curvature.

To compare the behavior of the HMN-elements with non-HMN-elements,
considering both large and small deflections, and both initially flat
and initially curved elements.

" To develop solution procedure cdncepts and methods suitable to provide
good convergence properties for problems using HMN-elements.

These goals have been met satisfactorily, and a thorough evaluation of the
elements has been made. It has not been possible, however, to demonstrate

the elements in nonlinear problems of practical importance (e.g., shell
buckling), due to the solution procedure difficulties which were encountered
and also the fact that the computer programs were designed for use with very
few elements. It has also not been undertaken to verify nonlinear predictions
against available exact solutions, despite the original intgntion to make
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such checks. Little additional effort would be required at this point, due to
the convergent solution procedures developed, to make such checks for simple
problems.

One of the conclusions reached in the evaluations of the HMN-AZI element is
the desirability of a formulation change to a modified type of isoparametric
element having displacements entirely nodally deffned, with explicit HMN '
constraints on higher deqree strain polynomials replaced by potential energy
constraints. The bases of this conclusion are contained in the discussions
of the numerical examples of this section, particularly examples #2 and #3.

Example 1: Pinched Cylinder

Figure 10 shows a cylindrical shell pinched by line loads 180° apart. To
study this problem, a quarter-circle model using four AZI-HMN elements was
analyzed, using the boundary conditions indicated. Both zero and non-zero
values of Poisson's ratio were used. This problem was a valuable example in
many respects. At the outset, it proved a severe test of solution procedures,
and led to several improvements in these methods. In addition, the pinched
cylinder problem has several particularly interesting features for the present
investigation: (1) it is a sensitive indicator of the differences between
shallow shell theory and deep shell theory; (2) it shows very strong effects
of the action of the HMN freedoms; (3) it illustrates clearly the relationship
between the use of the baseplane coordinate system and the HMN functions and
constraints; (4) it illustrates a difficulty inherent in nonlinear plate
bending analysis with nonzerc Poisson's ratio; (5) it affords an opportunity
to consider a case of nonlinearity of purely geometric (negligible nonlinear
strain or stress effects) origin. :

The radius of the cylinder is 1" and its width is 0.4". Two thicknesses were
used: .025" and .100". Loads from .34# to 67.9# were applied vertically at
the upper edge of the quarter-circle structural model, and both ends of the

quarter-circle were restrained against rotation. Deflections at the load up
to .098" were computed. This deflection value is 9.8% of the radius and 3.92
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times the thickness of .025". At this deflection a noticeable softening of

the structure, due to geometry change, has occurred, as compared to deflections
for lower load levels. The apparent softening is estimated to be 15%, based
on the deflection under the load. The non-HMN solutions yield deflections
ranging from atout 1/3 to 1/4 of the HMN values, depending on the displacement
amplitude. A check of the computed displacements at very small load levels
against the comparable analytical solution for ring bending shows that the
four element array used in this problem is about 5.7% too stiff. This is a
reasonable error for a four element array, using constant curvature elements,
for a problem of this type. Figure 10 shows the deflected shape of the
structure, plotted to scale, and the force-deflection curve, for the case of

t = .025".

The stress resultants in this problem are in general quite rapidly varying
over the 90° arc, and are strongly dependent on the number of elements used,

~ the value of Poisson's ratio, the shell thickness (R/t), and the type of

shell theory (deep or shallow) used. This type of complexity was found in

the present study, and also in Reference 7 for the linear case. In general,
finite element internal stresses cannot be compared directly with applied
loadings, except for very small elements. Even in this case, often the stress
resultants are difficult to interpret, except on the basis of some type of
average value over entire elements. The reason for this 1ies in the fact that
the finite element method achieves equi]ibrium with respect to generalized
loads, which are work-equivalents of the stresses, rather than with respect to
actual boundary values of the stresses themselves. In the present problem,
evaluation of the stress resultants was therefore made qualitatively. Stress
resultant values were compared for the HMN and non-HMN cases and for deep
versus shallow shell strain equations (see Section 2.1, Shell Strain Displace-
ment Equations). It was found that the non-HMN stress predictions in all
cases showed large oscillation behavior both within and between elements,
while the HMN stress results were very smooth and plausible in character over
the entire structure. The membrane stress resultant paralle! to the circular
arc was found to be sensitive in both magnitude and distribution to whether
the deep or shallow type of shell equations were used, for the case of the
thick (R/t = 10) shell. The other stress resultants were not influenced by the

34




choice of strain equations. Most of the stress resultants were strongly and
plausibly affected by Poisson's ratio; this is discussed later in this section.

The extremely strong influence of the HMN freedoms and constraints can be
understood quite clearly in this problem. It is recalled that the element
displacement states, referred to the updated element baseplane, are cartesian.
Considering an initially curved element, such as those employed in the present
example, it is easily seen that a flattening of the element, due to bending
displacements only, will cause aopreciable compressive straining near its
ends. The compressive strain due to such a flattening is given by

w°,x~w,x, where w® is the iritial curve of the element, w is the incremental
elastic deformation, and x is the baseplane cartesian coordinate along the
length of the element. The HMN displacements were specifically constructed
to eliminate this type of straining, which has a second degree behavior in x,
and, through the HMN constraint equations, this strain and the corresponding
stress are eliminated. The important thing to note is that t!is c¢ffect, as
described here, is purely lirear. The high degree strain is due to linear
behavior in the presence of initial element curvature, and resuits from the
use of the cartesian baseplane coordinate system. The continued deformaticn
of the element of course causes the development of nonlinear striirs of the
same type, which are also removed from the deformation state by the HMN
functions and constraints. It might be argued that a change from the cartesian
coordinates to the shell mid-surface curvilinear coordinates would eliminate
the high polynomial degree strains in the linear case, this removing the need
for the HMN functions and constraints. While this is true, of course, it
would in turn cause much more serious calculation problems in the nonlinear
case. This is discussed under "Shell Equations,” and "Coordinate Systems and
Updating," in Section 2.1.

Several plate bending problems, including the present one, have showed a
nonlinear effect involving bending in the presence of a non-zero Poisson's
ratio. Consider a plate or shell element initially flat in the y-direction,
but either curved or flat in the x-direction. When the element is bent into
an elastic curve in the x-direction, because of Poisson's ratio it attempts
to respond by becoming concave in the y-direction on its surface of bending
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tensile stress. This action causes slope changes of the plate or shell,

given by w, , which create y-direction nonlinear membrane tensile strains
proportional to (w,y)z, particularly near the edges of the element. The HMN
elements eliminate these strains through the HMN v-direction membrane displace-
ment functions. The non-HMN elements cannot modify these strains, and the
corresponding stresses, in a similar way, because the basic AZI-element membrane
functions do not provide displacements of suitable polynomial degree. Hence,
the non-HMN elements experience a strong, nonlinearly-induced resistance
against the cross-curvature due to Poisson's ratio, and respond by severely
Jimiting the amplitude of the y-direction curve of the elements. In the
present problem, the HMN element under the load experiences a lateral curve

of amplitude .0012", while the non-HMN element amplitude is .00028, for the
case of the 67.9# load and the .025" thickness. Due to the lateral curve,

the x-direction membrane stress for the HMN element is significantly affected
due to the resulting geometry change. Near the load, the edges of the elements
tend to move toward the center of the arc as a result of the Poisson's ratio-
induced lateral curvature. This causes a rather large x-direction compression
stress near the element edges, and a large tension stress near the central
portion of the element. This behavior is undetectable for the non-HMN case,
for two reasons: the lateral curvature is negligible; the x-direction membrane
stress is very badly behaved because of the lack of the HMN function action

to handle the initial curvature-induced stresses (see discussion above).

Reference 7 shows a strong dependence of numerical results for this problem,
for R/t =10 and v = 0, between finite element solutions based on deep shell
and shallow shell equations. This effect was evaluated with the present
element, also for R/t = 10 and v = 0. The results indicated that the deflec-
tions and all stress resultants except the circumferential membrane stress
are only slightly affected by the inclusion or omission in the strain-
displacement equations of the terms such as w°,x-u,

and w, Uy in the

circumferential bending curvature. Moreover, the b:nding d?sp]acements in

both cases check closely with the exact solution (linear). In the present
formulation, based on cartesian displacement definitions, including or omitting
these types of terms is the only way in which shallow or deep shell types of

theories can be simulated. It is concluded that, for the type of strain
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displacement equations used in this research, the usual errors associated
with shallow theory do not occur to any noticeable extent. This appears to
be due to the fact that, for the cartesian displacements used, the usual
approximations of the shallow shell type no longer cause any significant
approximation in the equations for the curvatures and the twist. It was
noted that the circumferential stress resultant was quite strongly affected
by the change of equations. This may or may not be significant, however,
because this particular resultant is not well predicted for the coarse
finite element model used, and is extremely sensitive to the shell equations
used in a way which is dependent on element size (Reference 7).

Example 2: Cantilever Plate with Initial Curvature

Figure 11 shows the problem under consideration. This is the interesting
“carpenters tape" problem, in which nonlinearity occurs because of flattening
of the cross-section. Many related problems are of importance in structural
analysis. This structure acts initially as a simple cantilever beam. For
either up-loads or down-loads, the edges of the beam tend to deflect in such

a way as to flatten the initial lateral curve of the cross-section, thereby
reducing its effective bending moment of inertia and causing loss of stiffness.
The reasons for solving the problem in the present work were: to determine
whether the HMN functions would act (as they should) to facilitate the flat-
tening of the section, which for the non-HMN case should be greatly attenuated;
to study the HMN-element behavior for a case of initial curvature transverse
to the principal loading direction. This problem illustrated several very
intéresting facets of the behavior of HMN elements.

Overall, the solutions obtained showed noticeable loss of stiffness, due to
cross-sectional flattening, for the HMN-element cases, and a slight tendency
for stiffening with the non-HMN element. The cross-section showed the expected
flattening for the HMN-element cases and also for the non-HMN element for the
up-load case only. For the down load cases, the non-HMN element showed a
reverse-flattening, i.e., an increased "cupping" of the section. The nonlinear
effects were small at the load levels studied, and the HMN and non-HMN results
were comparable in overall stiffness. Flattening of the section reached
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about 10% of the initial curved shape, and end deflections reached about
.36", which is about 22% of the span. This deflection is much greater than
either the thickness or the initial out-of-flatness of the section.

The flattening behavior computed with the HMN elements was well behaved and
completely plausible. The somewhat greater stiffness and reduced flattening
for the up-load case is consistent with the easi]y observed behavior of a
carpenter's tape subjected to upward and downward directions of loading.

This behavior is also consistent with the general effect of cross-curvature
induced by Poisson's ratio, and may possibly be related to this effect. The
ability of the HMN-elements to flatten is due directly to the action of the
HMN functions, since it is through these functions that the development of
large, y-direction membrane strains, due to the flattening, is avoided.

The anomolous flattening action of the non-HMN elements is caused by a very
interesting and unexpected behavior. Due to the overall bending loading in
the case of an upward load, the cross-section experiences tensile stress at
the edges and compressive stress at the crown. The reverse occurs for a
downward load. Considering first the downward load, it is seen that Poisson's
ratio will tend to create compressive y~-direction stresses near the edges of
the element and tensile stresses near the crown. This y-direction stress is
roughly quadratic in the y-coordinate. At this point a significant charac-
teristic of the AZI element, and of many multi-mode finite elements, is noted:
the element has no facility at all, within linear theory, to rid itself of
these particular Poisson's ratio-induced stresses, because of the character of
its available displacement functions. In the present case, however, where
nonlinear strains are included, the element can can rid itself of these
stresses almost completely. The means of doing this is by "cupping"

the section to an increased lateral curvature. This action produces, through
the terms w°, -w,y in the y-direction membrane strain, a tensioning of the
outer edge zone, and, in conjunction with the basic element v displace-

ments, a compression in the crown region. This action tends to reduce

the potential energy. Thus, for the case of downward loading, the section

.becomes more laterally curved, and the overall structural behavior becomes somewhat

stiffer. Of course, the well known tendency of the section to flatten (because
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of equilibrium effects) is present in the non-HMN as well as the HMN-element.
It simply occurs in the present case that the above-described behavior due to
the Poisson's ratio effect dominates the behavior. The flattening tendency

is driven by relatively small forces, and cannot compete with the very dominant
effects associated with the membrane energy.

For the upward load case, the non-HMN element must flatten its section to
conform to the Poisson's-ratio-related behavior as discussed above. In this
case the Poisson's-ratio-induced behavior reinforces the natural tendency of
the section to flatten. The data (Figure 11) show, however, that, while the
section does flatten in this case, it does so only to about the same degree
that the "cupping" occurred for the downward load case. This behavior appears
surprising, but is easily explained. The explanation is again in the dominant
effect of the membrane energy. The lateral bending of the section has been

. seen to create large y-direction membrane strains, and thus affects the

membrane energy directly. For the non-HMN case, which cannot relieve these
membrane stresses and strains, the equilibrium-driven flattening tendency (at
small loads) is simply not strong enough to overcome the inherent, membrane
strain-induced stiffness against lateral bending (flattening). Thus, the
non-HMN element solution shows a flattening or cupping of the section which
is totally dominated by, and essentially serves to exactly balance, the
Poisson's ratio-induced y-direction stresses. As observed, the effect is
essentially exactly reversed for the upload and download cases. For the HMN-
element, however, the lateral bending is only resisted by the small plate
bending stiffness, because the HMN functions eliminate any y-direction membrane
stress participation. Thus, the HMN elements show section flattening in
direct response to the normal flattening tendency, as driven by the equations
of equilibrium in the deformed structural shape.

One final observation concerning the HMN-element results for this problem is
noted. The Poisson's ratio-induced y-direction membrane stresses due to the
initial bending stress distrubution, seen to dominate the non-HMN element
behavior, gives rise to absolutely no response in the HMN-element. The
element does not have any first-order ability within its basic functions to
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rid itself of these stresses, because of the simple forms of the available v
displacement functions (nor does the non-HMN element). It cannot use the HMN
functions either, because the HMN constraints, which are the only means of
activating the HMN functions, respond to strain only, and not to stress.
Finally, it cannot rid itself of these stresses through lateral curvature, as
the non-HMN elements do, because the HMN constraints prevent the development
of y-direction deformations in this case (of course, this particular behavior
is very undesirable anyway). The conclusion which results from this discussion
is that the HMN element conceptual basis should be extended to apply to high
polynomial degree stresses as well as strains. In effect, this would require
committing the entire HMN process to the control of the potential energy
theorem.

Example 3: Cantilever Plate with End Restraint

Figure 12 shows the problem under consideration. This structure is highly
nonlinear due to the effect of the displacement constraint at the right end.
Its deflection magnitudes are controlled almost entirely by the large tension
stresses induced by this constraint, which are distributed almost uniformly
over the span. The HMN and non-HMN elements produce virtually identical
results under these circumstances (about 1% difference). The problem was
solved primarily as a test of the solution procedure. In order to obtain
convergence in this case, it is necessary to avoid, or otherwise attenuate
the effect of, the extremely large residual loads which result from the initial
steps of the solution, during which the stiffening effect due to the end
condition is not present in the stiffness matrix. The present solution
procedure (Section 2.3) handles this by looking at a range of amplitudes of
the initial solution step displacements. A state of minimum residual is
sought within this range to determine the optimal amplitude. In the present
case, a minimum does not occur within the search range, and its lower limit
amplitude is selected. The second step proceeds similarly. Because of the
rapid change of stiffness with deflection, the stiffness matrix is updated
frequently. This type of solution procedure avoids the requirement that the
user set intelligently chosen amplitude factors for the attenuation of the
residual load iterative procedure. It also avoids divergence even with
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relatively large load steps. Prior to implementation of the optimum-amplitude
search-type procedure, solution attempts diverged for this problem.

The figure shows a plot of the deflected shape of the edge of the plate. The
centerline deflections are slightly different due to the .3 value for Poisson's
ratio. The initial Tinear steps had an end deflection of .155" for zero
Poisson's ratio and .148 for v = .3. The linear theory end deflection for
zero Poisson's ratio is .157". The straight-line character of the deflection
shape for the outer two elements is a result of the nonlinearity-induced
tensile stresses. The nonlinear solution gives about 20% of the linear

solution value of the end deflection, at maximum load.

Example 4: Twisting of a Square Plate Fixed on One Side

Figure 13 illustrates the problem, which was solved with both a single element
and with four elements, as indicated. For the four element model the applied
loads are distributed over the end such that the deflections there are linear
in y. The applied torque is 250 inch-pounds. The character of this problem
is dominated by the use of the total fixity condition at the supported edge.
The problem is significantly nonlinear, with the initial step, linear solution
maximum deflections exceeding the final converged deflections in the ratios

of 1.65 for the single element and 1.87 for the four element case. The
membrane stresses are (and should be) quite large for this problem, and are
important influences on the torsion-bending behavior. Because of the fixed
edge and the fact that the structure would "prefer" to adopt a deformation
state of constant, pure twist, rather than the torsion-bending state demanded
by the edge constraint, the single element model is much too stiff in the
linear case. The linear first step single element maximum displacement is
.161", while for the four element model the value is .224". The deflection
data are tabulated on the figure.

For the case of the fixed edge, this problem is one in which the HMN elements
as formulated in this research demonstrate unacceptable behavior. The diffi-
culty is in the x-direction variation of the y-direction direct strain, ey.

This particular behavior (ey vs. x) is not considered by the HMN constraints

or the HMN supplementary displacement functions. The slope w,.y is a second
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degree function of x because of the fixed edge. Thus, the nonlinear behavior
generates a fourth degree function of x in the strain cy. No displacement
options are available to counteract this strain, which remains in the deforma-
tion state as a source of excessive energy and, hence, excessive stiffness.
Solutions of this problem with both the single and four element models show

that the stress o varies as a high degree (4th) function of x. Since this
occurs for both the v =0 and v = .3 cases, it is'clear1y caused by slope w,y and
the inability of the present HMN formulation to deal with the problem in a
successful manner. The largest oy values occur at the loaded end of the

plate, of course, because the lateral slope is largest there.

The figure shows a "carpet" plot of the variation of oy vs y on five x=constant
lines on the plate. Both the single element and four element cases are

shown. For the single element model, for which v = 0, oy is constant in y, and
the implied cross-plots would show o  to be quartic in x. For the four
element model, for which v = .3, the effect of Poisson's ratio is to cause oy
to be quadratic in y over each individual element. The distribution is
symmetric about the x-centerline, but a small discontinuity in oy occurs
between the elements which join each other at x = .5. Again, the implied
cross-plot variation of oy with x is quartic. The four element model shows
comparable oy values to the single element model overall, but has considerably
larger values at the loaded end. The cause of these larger stresses lies
partly in the added twist angle of the four element model (about 23%), and
partly in the rather sharply peaked distribution of oy with y. The latter is
probably due to the effect of Poisson's ratio.

The figure indicates the regions of tension and compression Oy In both
models this stress is compressive over the central region (0<X<1; .25<y<.75)
and tensile over the edge regions (0<X<1; 0<y<.25; .75<y<1). The cause of
this behavior is of course the tendency of the edge zones to foreshorten, due
to their slope, which tendency is resisted by the central zone of the

plate. This gives rise to a rather large level of membrane shear stress
as well. The single element and four element models have roughly comparable

maximum values of the x-direction direct stress resultant and the shear

stress resultant, as follows: four element model, Nx = 21300, Nx = -8000,

4?2




o

e |

Xy
larger values of Nx fo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>